The Local Monodromy as a Generalized Algebraic Correspondence with an Appendix By

نویسندگان

  • Caterina Consani
  • Peter Schneider
چکیده

For an algebraic, normal-crossings degeneration over a local eld the local monodromy operator and its powers naturally de ne Galois equivariant classes in the `-adic (middle dimensional) cohomology groups of some precise strata of the special ber of a normal-crossings model associated to the ber product degeneration. The paper addresses the question whether these classes are algebraic. It is shown that the answer is positive for any degeneration whose special ber has (locally) at worst triple points singularities. These algebraic cycles are responsible for and they explain geometrically the presence of poles of local Euler L-factors at integers on the left of the left-central point. 1991 Mathematics Subject Classi cation: 11G25, 11S40, 14C25, 14E10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy of Complete Intersections and Surface Potentials

Following Newton, Ivory and Arnold, we study the Newtonian potentials of algebraic hypersurfaces in R. The ramification of (analytic continuations of) these potential depends on a monodromy group, which can be considered as a proper subgroup of the local monodromy group of a complete intersection (acting on a twisted vanishing homology group if n is odd). Studying this monodromy group we prove,...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

The Local Monodromy as a Generalized Algebraic Corresponcence

Let X be a proper and smooth variety over a local field K and let X be a regular model of X defined over the ring of integers OK of K. When X is smooth over OK , the Tate conjecture equates the l–adic Chow groups of algebraic cycles on the geometric special fibre Xk̄ of X → Spec(OK) with the Galois invariants in H(XK̄ ,Ql(∗)). One of the results proved in [2] (cf. Corollary 3.6) shows that the Ta...

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014